References
Abbott, S. (2015). Understanding analysis. Springer.
Capiński, M., & Kopp, P. E. (2004). Measure, integral and
probability (Vol. 14). Springer.
Hernán, M. A., & Robins, J. M. (2010). Causal inference.
CRC Boca Raton, FL.
Kennedy, E. H. (2022). Semiparametric doubly robust targeted double
machine learning: A review. arXiv Preprint arXiv:2203.06469.
Kreyszig, E. (1991). Introductory functional analysis with
applications (Vol. 17). John Wiley & Sons.
Laan, M. J., & Robins, J. M. (2003). Unified methods for
censored longitudinal data and causality. Springer.
Petersen, M. L., & Laan, M. J. van der. (2014). Causal models and
learning from data: Integrating causal modeling and statistical
estimation. Epidemiology (Cambridge, Mass.), 25(3),
418.
Richardson, T. S., & Robins, J. M. (2013). Single world intervention
graphs (SWIGs): A unification of the counterfactual and graphical
approaches to causality. Center for the Statistics and the Social
Sciences, University of Washington Series. Working Paper,
128(30), 2013.
Tsiatis, A. A. (2006). Semiparametric theory and missing data.
Van der Laan, M. J., Rose, S., et al. (2011). Targeted learning:
Causal inference for observational and experimental data (Vol. 4).
Springer.
Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3).
Cambridge university press.